RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 89(131), Number 2(10), Pages 182–190 (Mi sm3225)

This article is cited in 21 papers

Functions with given estimate for $\partial f/\partial\overline z$, and N. Levinson's theorem

E. M. Dyn'kin


Abstract: In this paper it is shown that a twice continuously differentiable function $\varphi$ on the unit circle with Fourier coefficients $\{\widehat\varphi(n)\}$ admits a continuously differentiable extension $f$ to the whole plane such that
$$ \frac{\partial f}{\partial\overline z}=O[h(|1-|z||)] $$
(here $h$ is a given weight with $h(+0)=0)$ if $\varphi(n)=O(n^{-1}a_n)$, where
$$ a_n=\int_0^1h(r)(1-r)^{|n|}\,dr,\qquad n=0,\pm1,\pm2,\dots\,. $$

If $\int_0\ln\ln\frac1{h(r)}\,dr<+\infty$, then the class of such functions $\varphi$ turns out to be non-quasi-analytic. Hence a new proof of the known theorem of N. Levinson on the normality of families of analytic functions is derived.
Bibliography: 7 titles.

UDC: 517.53

MSC: 30A74, 30A78

Received: 14.04.1972


 English version:
Mathematics of the USSR-Sbornik, 1972, 18:2, 181–189

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026