Abstract:
It is known that if a measure $\mu$ has no atoms, then the space $L_1(T,\mu)$ contains no finite-dimensional Chebyshev subspace. In the present work it is shown that an arbitrary finite-dimensional subspace $E$ in $L_1(T,\mu)$ (for which the measure has no atoms) is almost Chebyshev, i.e. the set of elements possessing nonunique best approximations in the given finite-dimensional space $E$ is of the first category. At the same time this set is everywhere dense. There is further given a characterization of elements with nonunique best approximations.
Bibliography: 16 titles.