RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 88(130), Number 4(8), Pages 609–622 (Mi sm3201)

This article is cited in 2 papers

A problem without initial conditions for linear degenerate hyperbolic equations of second order with infinite domain of dependence

A. S. Kalashnikov


Abstract: The equation
$$ \psi^2(t,x)u_{tt}+\varphi(t,x)u_t-M\biggl(t,x,\frac{\partial}{\partial x}\biggr)u=f(t,x) $$
is considered on the strip $H=(0,T]\times\mathbf R_x^n$. Here $M$ is a linear elliptic operator of the second order, and $\psi$ and $\varphi$ are nonnegative on $H$ and have a zero at least of the first order on a hyperplane $t=0$. Hence for $t=0$ we cannot give the initial values. Precise restrictions on the growth of the desired function for $|x|\to\infty$ are found guaranteeing the existence and uniqueness of a generalized solution of the problem without initial conditions.
Bibliography: 11 titles.

UDC: 517.946

MSC: Primary 35L99; Secondary 35L15

Received: 13.09.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 17:4, 603–616

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026