RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 88(130), Number 4(8), Pages 522–535 (Mi sm3194)

This article is cited in 9 papers

On existence conditions for the Stieltjes integral

V. I. Matsaev, M. Z. Solomyak


Abstract: A modification of the definition of the Stieltjes integral $\int_0^1f\,dg$ is proposed, and it is shown that this integral exists if $g\in\operatorname{Lip}\alpha$, $f\in W_1^{1-\alpha}$, and $0<\alpha<1$ ($W_1^{1-\alpha}$ is the Sobolev–Slobodetskii class. It is shown that this integral defines a general form of a linear functional on $W_1^{1-\alpha}$ and on the class $\operatorname{Lip}_0\alpha$ of functions $g$ for which $g(x)-g(y)=o(|x-y|^\alpha)$. Applications to the integration of abstract functions and to the theory of double operator integrals are given.
Bibliography: 8 titles.

UDC: 517.394.1

MSC: Primary 26A39, 26A42; Secondary 26A16, 26A45, 28A40, 46E35

Received: 18.06.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 17:4, 515–527

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026