RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 85(127), Number 2(6), Pages 163–188 (Mi sm3190)

This article is cited in 47 papers

On smooth mappings of the circle into itself

M. V. Jakobson


Abstract: In this article is constructed the set $\mathfrak M=\mathfrak M_1\cup\mathfrak M_2$, open and everywhere dense in $C^1(S^1,S^1)$, of $\Omega$-stable mappings. $\Omega(f)$ is totally disconnected and $f/\Omega(f)$ is topologically conjugate to the topological Markov chain with a finite number of states; for $f\in\mathfrak M_2$ we have $\Omega(f)=S^1$ and $f/S^1$ topologically conjugate to $z^n/S^1$. For $f\in\mathfrak M$ there exists a hyperbolic structure on¨$\Omega(f)$.
Figures: 1
Bibliography: 9 titles.

UDC: 513.838

MSC: 58C25

Received: 15.04.1970


 English version:
Mathematics of the USSR-Sbornik, 1971, 14:2, 161–185

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026