RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 84(126), Number 4, Pages 526–536 (Mi sm3163)

This article is cited in 9 papers

On Plücker properties of rings

G. B. Kleiner


Abstract: Questions are considered of decomposability of $m$-vectors from $\Lambda^m(A^n)$, where $A$ is a commutative ring with $1$, and $A^n$ is the direct sum of $n$ copies of $A$.
Let $A$ be a Krull ring. We shall denote by $\operatorname{div}\omega$ the greatest common divisor of the coordinates of the $m$-vector $\omega\in\Lambda^m(A^n)$. For the case where the $\operatorname{div}\omega$ is square-free in terms of the $A$-module $K_\omega=\{x\in A^n:x\land\omega=0\}$ necessary and sufficient conditions are given for decomposability of $\omega$. A characterization of factorial Plücker rings is stated, i.e. rings in which for arbitrary $n>m\geqslant2$ every $m$-vector of $\Lambda^m(A^n)$ which satisfies the Plücker condition is decomposable.
Bibliography: 8 titles.

UDC: 519.48

MSC: 15A75

Received: 23.04.1970


 English version:
Mathematics of the USSR-Sbornik, 1971, 13:4, 517–528

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026