RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 88(130), Number 2(6), Pages 277–286 (Mi sm3159)

This article is cited in 5 papers

Functions of bounded $q$-integral $p$-variation and imbedding theorems

A. P. Terekhin


Abstract: For a function of one real variable there is defined a notion of $q$-integral $p$-variation generalizing Wiener $p$-variation. In terms of this notion there is given a necessary and sufficient condition that a function in $L_q$ have a higher derivative in $L_p$ ($p\leqslant q$), and also that the derivative have a definite smoothness in $L_p$. In addition, embedding theorems with inversion are proved in the periodic case for generalized Lipschitz classes in $L_p$.
Bibliography: 9 titles.

UDC: 517.51

MSC: Primary 26A45; Secondary 26A16, 26A24

Received: 03.05.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 17:2, 279–288

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026