RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 88(130), Number 2(6), Pages 229–237 (Mi sm3155)

This article is cited in 11 papers

On rings with a discrete divisor class group

V. I. Danilov


Abstract: We consider the conjecture: $C(A)=C(A[[T]])$ for a local ring $A$ if and only if the divisor class group of the strict henselization $C(^\mathrm{sh}A)$ has a finite number of generators. This conjecture is proved in two cases: 1) $A$ has characteristic $0$, 2) $A$ is an equicharacteristic ring of an isolated singularity.
Bibliography: 15 titles.

UDC: 513 015.7

MSC: Primary 13J15, 13F15; Secondary 14L15

Received: 07.04.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 17:2, 228–236

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026