RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 88(130), Number 2(6), Pages 218–228 (Mi sm3154)

On densely imbedded ideals of algebras

L. N. Shevrin


Abstract: The paper arose as a result of solution of a problem of finding necessary and sufficient conditions characterizing a pair of associative rings or algebras $A$, $B$, where $A$ is a densely imbedded ideal in $B$. It turns out that the methods by which one succeeds in obtaining this solution permit treatment of the even more general situation of the so-called distributive $\Omega$-semigroups, for which the corresponding $\Omega$-algebras are commutative. This situation, with $\Omega$ empty, includes the case of semigroups also.
Bibliography: 27 titles.

UDC: 519.4

MSC: Primary 08A25; Secondary 20M10

Received: 02.03.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 17:2, 216–227

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026