RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 88(130), Number 1(5), Pages 38–60 (Mi sm3145)

This article is cited in 33 papers

The method of orthogonal projections and the Dirichlet problem in domains with a fine-grained boundary

E. Ya. Khruslov


Abstract: The Dirichlet problem is considered for an elliptic selfadjoint operator $L$ in a domain $D^{(s)}=D\setminus\bigcup_{i=1}^s F_i^{(s)}$, where $D$ is a bounded domain in $R_n$ and the $F_i^{(s)}$ are nonintersecting closed sets (grains). It is shown that, if the grain diameters tend to zero, and the number $s$ of grains tends to infinity, the solution of the problem reduces, under certain conditions, to the solution of another boundary value problem in the simpler domain $D$.
Bibliography: 8 titles.

UDC: 517.9

MSC: 35J40

Received: 13.04.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 17:1, 37–59

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026