RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 87(129), Number 4, Pages 459–489 (Mi sm3136)

This article is cited in 88 papers

Invariant subspaces of analytic functions. I. Spectral analysis on convex regions

I. F. Krasichkov-Ternovskii


Abstract: Let $G$ be a convex region in the complex plane and $H$ be the space of analytic functions on $G$ with the topology of uniform convergence on compacta of $G$. A closed subspace $W\subset H$ is said to be invariant if it is invariant with respect to the differentiation operator, i.e. if $f\in W$, then $f'\in W$. We say that $W$ admits a spectral synthesis if $W$ is the closed linear span of the exponential monomials contained in $W$. L. Schwartz in 1947 asked the question: Is it true that every invariant subspace admits a spectral synthesis? We find that the answer, generally speaking, is no. In this paper we formulate the precise criteria for the admissibility of spectral synthesis in terms of annihilator submodules of invariant subspaces.
Bibliography: 23 titles.

UDC: 517.5+519.4

MSC: Primary 30A18, 30A98, 46E15; Secondary 30A08, 30A64

Received: 12.03.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 16:4, 471–500

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026