RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 87(129), Number 3, Pages 396–416 (Mi sm3132)

This article is cited in 1 paper

Algebraic-differential transformations of linear differential operators of arbitrary order and their spectral properties applicable to the inverse problem. I. The case of finite $\mathfrak N$

Z. I. Leibenzon


Abstract: Linear differential operators $R$ of order $n$ from $C^n[0,1]$ into $C[0,1]$, i.e. without boundary conditions, are discussed. With $\lambda$ complex, let $Z^R_\lambda$ denote the linear space of all solutions $z(x)\in C^n[0,1]$ of the homogeneous equation $Rz=\lambda z$. We use die operator $R$ and certain of its spectral properties to obtain an operator $L$ analogous to $R$. Our main result is to obtain expressions defining a linear mapping $T_\lambda\colon Z_\lambda^R\to Z_\lambda^L$ (Theorem 2.6). The linear mappings $T_\lambda$ are meromorphically dependent on $\lambda$.
Bibliography: 2 titles.

UDC: 517.43

MSC: 47E05

Received: 24.03.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 16:3, 408–428

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026