RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 87(129), Number 3, Pages 369–376 (Mi sm3130)

Invariant subrings of induced rings

B. Kh. Kirshtein


Abstract: Let $\Phi(G_{k_\mathfrak p},P_{\Theta,k_\mathfrak p},\varphi,K)$ be the ring induced by the homorphism $\varphi\colon P_{\Theta,k_\mathfrak p}\to \operatorname{Aut}K$, where $G_{k_\mathfrak p}$ is the Chevalley group over the field $k_\mathfrak p$ of $\mathfrak p$-adic numbers and $P_{\Theta,k_\mathfrak p}$ is a parabolic sybgroup. In this note we characterize a class of subrings of this ring which are invariant relative to translations by elements of the group $G_{k_\mathfrak p}$.
Bibliography: 4 titles.

UDC: 519.46

MSC: Primary 17B20; Secondary 20G25

Received: 11.02.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 16:3, 381–388

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026