This article is cited in
4 papers
On summability and convergence of eigenfunction expansions of a differential operator
K. I. Babenko
Abstract:
Let
$a$ be a positive elliptic operator with constant coefficients, and let
$\Omega$ be a region in
$R^l$. We consider the operator
$a$ on
$C^\infty_0(\Omega)$, and we let
$\hat a$ be an extension of this operator with a positive lower bound. Let
$\{E_\lambda\}$ denote the spectral family of the operator
$\hat a$. The operator
$E_\lambda$ or its Riesz mean
$E^a_\lambda$ will be considered on functions
$f\in L^p(\Omega)$,
$1\leqslant p<\infty$, such that
$\operatorname{supp}f\subseteq\Omega_0$, where
$\Omega_0$ is a region with compact closure in
$\Omega$. We will study the norm of the operator
$ E_\lambda\colon L_p(\Omega_0)\to L_p(\Omega_0)$. We obtain definitive results when the point
$(p,\alpha)$ lies in one of the three regions:
\begin{gather*}
\left\{(p,\alpha):1\leqslant p\leqslant\frac{2l}{l+1},0\leqslant\alpha\leqslant\alpha_p=\frac lp-\frac{l+1}2\right\},\\
\left\{(p,\alpha):\frac{2l}{l-1}\leqslant p\leqslant\frac{2l}{l-1},\alpha=0\right\},\\
\left\{(p,\alpha):1\leqslant p\leqslant2,\alpha>(l-1)\biggl(\frac1p-\frac12\biggr)\right\}.
\end{gather*}
For
$1\leqslant p\leqslant\frac{2l}{l+1}$,
$\alpha=\alpha_p=\frac lp-\frac{l+1}2$
we construct an example of a function for which the Riesz mean of order
$\alpha_p$ of its spectral expansion diverges almost everywhere. For
$\frac{2l}{l+1}<p<2$,
$\alpha=0$ we construct an analogous example for multiple Fourier series expansions.
Bibliography: 26 titles.
UDC:
517.43
MSC: Primary
35P10,
40G99; Secondary
40E05 Received: 24.01.1973