RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 91(133), Number 1(5), Pages 50–61 (Mi sm3103)

This article is cited in 3 papers

On a global property of a matrix-valued function of one variable

B. V. Verbitskii


Abstract: In this paper we prove the following assertion. Let $A(x)$ be an $n\times n$ matrix whose elements belong to $C^k[0,b]$, where $k\geqslant0$ and $0<b<\infty$. Furthermore, let $\{\sigma_j(x)\}_1^m$ ($m\leqslant n$) be the distinct eigenvalues of $A(x)$ belonging to $C^k[0,b]$. Then, if $A(x)$ for all $x\in[0,b]$ is similar to a Jordan matrix $J(x)$, in which to each eigenvalue $\sigma_j(x)$ there corresponds a constant number of Jordan blocks whose dimension is also independent of $x\in[0,b]$, it follows that $A(x)$ is smoothly similar to $J(x)$ on $[0,b]$.
Bibliography: 6 titles.

UDC: 517.5

MSC: Primary 15A21; Secondary 34A30

Received: 16.05.1972


 English version:
Mathematics of the USSR-Sbornik, 1973, 20:1, 53–65

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026