RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 84(126), Number 3, Pages 425–439 (Mi sm3084)

This article is cited in 1 paper

Boundary properties of analytic functions representable as integrals of Cauchy type

G. Ts. Tumarkin


Abstract: This paper is devoted to a study of the properties of the classes $K_S(G)$ and $K_L(G)$ of functions $f(z)$ analytic in a region $G$ having a rectifiable Jordan boundary which are representable as Cauchy–Stieltjes integrals $f(z)=\int_\Gamma(\zeta-z)^{-1}d\mu(\zeta)$ or Cauchy–Lebesgue integrals $f(z)=\int_\Gamma\omega(\zeta)(\zeta-z)^{-1}d\zeta$, respectively.
Bibliography: 14 titles.

UDC: 517.53

MSC: 30A72, 30A86

Received: 26.02.1970


 English version:
Mathematics of the USSR-Sbornik, 1971, 13:3, 419–434

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026