RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 84(126), Number 2, Pages 313–326 (Mi sm3075)

Representation of functions in the unit disk by series of rational fractions

T. A. Leont'eva


Abstract: It is shown that if $f(z)=\sum_{n=0}^\infty a_nz^n$, $a_n=O(1/n^p)$, $p>1$, then $f(z)$ can be expanded in a series
$$ f(z)=\sum_{k=1}^\infty\frac{A_k}{1-\lambda_kz},\qquad|\lambda_k|<1, $$
that converges uniformly inside the unit disk $|z|<1$. For $p>2$ the expansion is valid in the closed disk $|z|\leqslant1$, and $\sum_{k=1}^\infty|A_k|<\infty$.
Bibliography: 6 titles.

UDC: 517.53

MSC: 30A16

Received: 24.06.1970


 English version:
Mathematics of the USSR-Sbornik, 1971, 13:2, 309–322

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026