RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 84(126), Number 2, Pages 290–300 (Mi sm3073)

This article is cited in 4 papers

Comology of compact complex homogeneous spaces

D. N. Akhiezer


Abstract: In this paper we study compact complex homogeneous spaces having a complex torus for the fiber of the canonical fibration (Tits fibration). We prove that the cohomology of such a space $X$ with coefficients in the sheaf of germs of holomorphic sections of the homogeneous linear fibration $\mathbf E$ is nonzero only if $\mathbf E$ is the inverse image of some fibration $\widetilde{\mathbf E}$ over a base $D$ of the canonical fibration. In this case the representation in $H^*(X,\mathbf E)$ can be computed using a spectral sequence if we know the representation in $H^*(D,\widetilde{\mathbf E})$. The resulting theorem generalizes Griffiths' result for $C$-spaces.
Bibliography: 8 titles.

UDC: 519.46

MSC: Primary 57E15; Secondary 14F05

Received: 03.03.1970


 English version:
Mathematics of the USSR-Sbornik, 1971, 13:2, 285–296

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026