RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 87(129), Number 2, Pages 159–178 (Mi sm3042)

Discontinuous solutions of nonlinear mixed problems for hyperbolic equations on a plane

V. N. Gol'dberg


Abstract: In $\overline\Pi_{\frac12}=\{0\leqslant x\leqslant1,\ 0\leqslant t\leqslant\frac12\}$ we consider the problem
\begin{gather} u_{xx}-u_{tt}=A_1(x,t,u)u_x+A_2(x,t,u)u_t+A_3(x,t,u), \\ u(x,0)=\varphi_0(x),\quad u_t(x,0)=\varphi_1(x)\quad\text{for}\quad0\leqslant x\leqslant1, \\ a_i(u)u_x+b_i(u)u_t=f_i(t,u)\quad\text{for}\quad x=i\enskip(i=0,1), \end{gather}
here $A_j, \varphi_i, a_i, b_i$ and $f_i$ are sufficiently smooth functions, $h_0=b_0-a_0$ has only isolated zeros on $R^1$, and $h_1=b_1+a_1$ does not have zeros on $R^1$. It is assumed that in $\Pi_{T^*}=\{0\leqslant x\leqslant 1,\ 0\leqslant t<T^*\}$, $0<T^*<\frac12$, there exists a solution $\mathring u\in C_2(\Pi_{T^*})$ of problem (1)–(3), where $\sup|\mathring u|<\infty$, $|h_0(\mathring u(0,t))|>0$ for $0\leqslant t <T^*$, and $\inf_{0\leqslant t<T^*}|h_0(\mathring u(0,t))|=0$. It is shown that $\mathring u\in C(\overline\Pi_{T^*})$ and $\mathring v=\mathring u_x+\mathring u_t\in C(\overline\Pi_{T^*})$, and that if $\Gamma_0=f_0(T^*,u(0,T^*))-a_0(\mathring u(0,T^*))\mathring u(0,T^*)\ne0$, there are not even continuous generalized solutions of problem (1)–(3) in $\overline\Pi_T$ for any $T$, $T^*<T\leqslant\frac12$. For $\Gamma_0\ne0$ the author introduces a definition and establishes existence and uniqueness theorems for the discontinuous solution of (1)–(3) in $\overline\Pi_{\frac12}$.
Bibliography: 9 titles.

UDC: 517.9

MSC: Primary 35L20, 35B99; Secondary 35D05

Received: 09.04.1970


 English version:
Mathematics of the USSR-Sbornik, 1972, 16:2, 159–180

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026