RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 90(132), Number 1, Pages 34–47 (Mi sm2994)

This article is cited in 2 papers

On $p$-spaces and their continuous maps

N. V. Velichko


Abstract: The following theorems are the main results of this paper.
Theorem 1. Let $f\colon X\to Y$ be a closed mapping of the weakly paracompact $p$-space $X$. In order that the space $Y$ be weakly paracompact and plumed, it is necessary and sufficient that the mapping $f$ be peripherally bicompact. \smallskip
Theorem 2. {\it Let $f\colon X\to Y$ be a closed mapping of a weakly paracompact $p$-space $X$. Then $Y=Y_0\cup Y_1,$ where the set $Y_1$ is $\sigma$-discrete in $Y$ and the set $f^{-1}y$ is bicompact for each point $y\in Y_0$.}
An example is constructed of a weakly paracompact, locally compact, $\sigma$-paracompact space which is not normal and which cannot be mapped perfectly onto a space with a refining sequence of coverings.
Bibliography: 22 titles.

UDC: 513.83

MSC: Primary 54G10, 54C10; Secondary 54D20

Received: 29.01.1972


 English version:
Mathematics of the USSR-Sbornik, 1973, 19:1, 35–46

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026