RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1998 Volume 189, Number 1, Pages 149–160 (Mi sm299)

This article is cited in 3 papers

Actions of Hopf algebras

A. A. Totok

M. V. Lomonosov Moscow State University

Abstract: We consider an action of a finite-dimensional Hopf algebra $H$ on a non-commutative associative algebra $A$. Properties of the invariant subalgebra $A^H$ in $A$ are studied. It is shown that if $A$ is integral over its centre $\mathrm Z(A)$ then in each of three cases $A$ will be integral over $\mathrm Z(A)^H$ (the invariant subalgebra in $\mathrm Z(A)$):
We also consider an action of a commutative Hopf algebra $H$ on an arbitrary associative algebra, in particular, the canonical action of $H$ on the tensor algebra $T(H)$. A structure theorem on Hopf algebras is proved by application of the technique developed. Namely, every commutative finite-dimensional Hopf algebra $H$ whose coradical $H_0$ is a sub-Hopf algebra or cocommutative, where $\operatorname {char}k=0$ or $\operatorname {char}k>\dim H$, is cosemisimple, that is, $H=H_0$. In particular, a commutative pointed Hopf algebra with $\operatorname {char}k=0$ or $\operatorname {char}k>\dim H$ will be a group Hopf algebra. An example is also constructed showing that the restrictions on $\operatorname {char}k$ are essential.

UDC: 512.667.7

MSC: 16W30

Received: 28.04.1997

DOI: 10.4213/sm299


 English version:
Sbornik: Mathematics, 1998, 189:1, 147–157

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026