RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1977 Volume 104(146), Number 1(9), Pages 162–174 (Mi sm2942)

Carleman estimates for the Schrödinger operator with a locally semibounded strongly singular potential

Yu. B. Orochko


Abstract: Let $A$ be an arbitrary selfadjoint extension in $L_2(\mathbf R^n)$, $n\geqslant2$, of the minimal Schrödinger operator with a potential $q(x)\in L_{2,\mathrm{loc}}(\mathbf R^n)$ that is locally bounded from below. For a certain class of functions $\Phi(A,t)$ of $A$ and a parameter $t>0$, which are connected with the hyperbolic equation $u''=Au$, an estimate of the form
$$ \bigl|[\Phi(A,t)f](x)\bigr|\leqslant c(x,t)\int_{|y-x|\leqslant t}|f(y)|^2\,dy $$
is obtained for almost all $x\in\mathbf R^n$; here $f\in L_2(\mathbf R)^n$ is a function with compact supportand $c(x,t)$ is explicitly expressed in terms of an arbitrary continuous function $m(x)\geqslant-q(x)$, $x\in\mathbf R^n$. An application of this estimate to the question of pointwise approximation of functions by spectral “wave packets” is considered.
Bibliography: 15 titles.

UDC: 517.43

MSC: 35J10, 35B45

Received: 22.10.1976


 English version:
Mathematics of the USSR-Sbornik, 1977, 33:1, 147–158

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026