RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1977 Volume 103(145), Number 4(8), Pages 467–479 (Mi sm2918)

This article is cited in 5 papers

Stability of a minimization problem under perturbation of the set of admissible elements

V. I. Berdyshev


Abstract: Let $F$ be a continuous real functional on the space $X$. Continuity of the operator $\mathcal F$ from $2^X$ into itself is considered, where $\mathcal F(M)=\bigl\{x\in M:F(x)=\inf F(M)\bigr\}$ for each $M\in 2^X$. In particular, in the case of a normed space $X$ the following is proved. Write
$$ AB=\sup_{x\in A}\inf_{y\in B}\|x-y\|,\qquad h(A,B)=\max\{AB,BA\},\qquad(A,B\subset X), $$
and let $\mathcal M$ be the totality of all closed convex sets in $X$. A set $M\subset X$ is called approximately compact if every minimizing sequence in $M$ contains a subsequence converging to an element of $M$.
Suppose $X$ is reflexive, $F$ is convex and the set $\bigl\{x\in X:F(x)\leqslant r\bigr\}$ is bounded for $r>\inf F(X)$ and contains interior points. Then the following assertions are equivalent:
a) $M_\alpha,M\in\mathcal M$, $h(M_\alpha,M)\to0\Rightarrow\mathcal F(M_\alpha)\mathcal F(M)\to0$,
b) every set $M\in\mathcal M$ is approximately compact.
Bibliography: 15 titles.

UDC: 519.3

MSC: 49A25, 49A30

Received: 25.10.1976


 English version:
Mathematics of the USSR-Sbornik, 1977, 32:4, 401–412

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026