RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1977 Volume 103(145), Number 3(7), Pages 392–403 (Mi sm2913)

This article is cited in 12 papers

Limit theorems for the number of trees of a given size in a random forest

Yu. L. Pavlov


Abstract: The author considers the set of all forests consisting of $N$ rooted trees and containing $n$ nonroot vertices; the root vertices are numbered from 1 to $N$, and the nonroot from 1 to $n$. A uniform probability distribution is introduced on this set. Let $\mu_r(n,N)$ denote a random variable equal to the number of trees of a random forest containing exactly $r$ nonroot vertices. Results are obtained yielding a complete description of the limit behavior of the variables $\mu_r(n,N)$ for all values of $r$ for various ways of letting $n$ and $N$ approach infinity. It is shown that these results can be used for studying random mappings.
Bibliography: 9 titles.

UDC: 519.219

MSC: Primary 60C05, 60F05; Secondary 60E05

Received: 12.01.1977


 English version:
Mathematics of the USSR-Sbornik, 1977, 32:3, 335–345

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026