Abstract:
The author considers the set of all forests consisting of $N$ rooted trees and containing $n$ nonroot vertices; the root vertices are numbered from 1 to $N$, and the nonroot from 1 to $n$. A uniform probability distribution is introduced on this set. Let $\mu_r(n,N)$ denote a random variable equal to the number of trees of a random forest containing exactly $r$ nonroot vertices. Results are obtained yielding a complete description of the limit behavior of the variables $\mu_r(n,N)$ for all values of $r$ for various ways of letting $n$ and $N$ approach infinity. It is shown that these results can be used for studying random mappings.
Bibliography: 9 titles.