RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1976 Volume 101(143), Number 4(12), Pages 500–507 (Mi sm2909)

This article is cited in 2 papers

Galois extensions of radical algebras

V. K. Kharchenko


Abstract: Suppose $G$ is a finite group of automorphisms of an associative algebra $K$ with an identity element over a field $F$. Let $t(x)=\sum_{g\in G}x^g$. Assume that $\rho$ is a supernilpotent radical which is closed under the taking of subalgebras and satisfies the following condition: if $A\in\rho$ and $M$ is a nonempty set, then the ring $A_M$ of $M\times M$ matrices all but a finite number of whose columns are zero is radical.
THEOREM. If $R$ is a two-sided ideal of $K$ and $K=t(K)K,$ then $t(R)\in\rho$ implies $R\in\rho$.
Examples of radicals satisfying the above conditions are Baer's lower radical, the locally nilpotent radical, the locally finite radical, and also the algebraic kernel and Köthe radical, if $F$ is uncountable.
Bibliography: 5 titles.

UDC: 519.48

MSC: 16A21, 16A22, 16A72, 16A74

Received: 01.03.1976


 English version:
Mathematics of the USSR-Sbornik, 1976, 30:4, 441–447

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026