RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1998 Volume 189, Number 2, Pages 3–72 (Mi sm290)

This article is cited in 6 papers

Maximization of functionals in $H^\omega [a,b]$

S. K. Bagdasarov

Ohio State University

Abstract: The structure and the properties of the extremal functions in the problem
$$ \int _a^b h(t)\psi (t)\,dt\to \sup, \qquad h\in H^\omega [a,b], $$
are described in the case when $\psi$ is an integrable function with zero mean and finitely many points of sign change on $[a,b]$ and $H^\omega [a,b]$ is the class of absolutely integrable functions on $[a,b]$ with modulus of continuity majorized by a fixed convex modulus of continuity $\omega$.

UDC: 517.988

MSC: Primary 41A17, 41A46, 41A50; Secondary 46E35

Received: 27.05.1996 and 02.10.1997

DOI: 10.4213/sm290


 English version:
Sbornik: Mathematics, 1998, 189:2, 159–226

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026