RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1982 Volume 119(161), Number 3(11), Pages 406–417 (Mi sm2893)

A characterization of simple Zassenhaus groups

A. V. Romanovskii


Abstract: Let a finite group $G$ have a $CC$-subgroup $M$ of order $m$ whose normalizer differs from $M$ and $G$, and let the order of $N_G(M)$ be odd and each coset $Mx$ of $G$, for $x\in G\setminus N_G(M)$, contain an involution. Earlier the author (R Zh Mat, 1979, 8A154) posed the question of the existence of simple groups other than $PSL(2,m)$ with the indicated properties. In this paper it is proved that $G\cong PSL(2,m)$. The result includes theorems of Feit and Ito on Zassenhaus groups.
Bibliography: 11 titles.

UDC: 519.44

MSC: 20B20, 20G40

Received: 26.02.1982


 English version:
Mathematics of the USSR-Sbornik, 1984, 47:2, 397–409

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026