RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1976 Volume 100(142), Number 3(7), Pages 447–454 (Mi sm2865)

This article is cited in 1 paper

On finite simple groups containing strongly isolated subgroups

N. D. Podufalov


Abstract: Suppose that a finite simple group $G$ containing a strongly isolated subgroup whose order is divisible by $3$ has a $2$-local subgroup whose order is also divisible by $3$. Then $G$ is isomorphic either to $\operatorname{PSL}(3,4)$ or to $\operatorname{PSL}(2,q)$ for a suitable $q$.
If a finite simple group $G$ contains for some prime number $p\in\{3,5\}\cap\pi(G)$ a strongly isolated subgroup whose order is divisible by $p$, then $G$ is isomorphic to one of the groups $\operatorname{PSL}(3,4)$, $\operatorname{PSL}(2,q)$ for a suitable $q$, or $\operatorname{Sz}(2^{2m+1})$, $m>0$.
A number of other results on groups containing strongly isolated subgroups are also derived in the paper.
Bibliography: 13 titles.

UDC: 519.44

MSC: Primary 20D05; Secondary 20G40

Received: 18.06.1974 and 26.01.1976


 English version:
Mathematics of the USSR-Sbornik, 1976, 29:3, 403–409

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026