RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1976 Volume 100(142), Number 2(6), Pages 242–247 (Mi sm2777)

This article is cited in 3 papers

A result on differentiable measures on a linear space

A. V. Uglanov


Abstract: The basic content of this note is the proof of the following result.
Let $X$ be a linear space, let $L$ be a subspace of it with $\dim L=m<\infty$, let $R$ be a ring of subsets of $X$ which is invariant with respect to shifts by vectors in $L$, and let $\sigma$ be a finitely additive bounded quasi-content on $R$ which is differentiable $n$ times with respect to the subspace $L$. Then, for any bounded set $W\subset L$,
$$ \lim_{r\to0}\sup_{L^c}\frac{|\sigma|(rW+L^c)}{r^{mn/(m+n)}}=0, $$
where $L^c$ is a linear complement to $L$ with respect to $X$, and $|\sigma|$ is the total variation of the quasi-content $\sigma$.
Bibliography: 2 titles.

UDC: 513.88

MSC: Primary 28A15, 28A40; Secondary 28A10

Received: 07.03.1975


 English version:
Mathematics of the USSR-Sbornik, 1976, 29:2, 217–222

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026