RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1987 Volume 134(176), Number 3(11), Pages 386–403 (Mi sm2765)

This article is cited in 3 papers

Approximation in $L_p$ by polynomials in the Walsh system

V. I. Ivanov


Abstract: For $0<q=p<\infty$ and $q=1$, $1\le p<\infty$ we calculate the quantity
$$ \varkappa_{2^n}(L_p,L_q)=\sup_{f\in L_p}\frac{E_{2^n}(f)_q} {\dot\omega\bigl(\frac1{2^n},f\bigr)_p}\,, $$
where $E_{2^n}(f)_q$ is the best $L_q$-approximation of the function $f$ by Walsh polynomials of order $2^n$ and
$$ \dot\omega(\delta,f)_p=\sup_{0<t<\delta}\|f(x\dot+t)-f(x)\|_p $$
is the dyadic modulus of continuity of $f$ in $L_p$ determined by the operation $\dot+$ of addition of numbers from the interval $[0,1]$ in the dyadic system.
Bibliography: 21 titles.

UDC: 517.5

MSC: Primary 41A10, 42C10, 41A17, 41A25, 41A15; Secondary 41A50

Received: 17.04.1986


 English version:
Mathematics of the USSR-Sbornik, 1989, 62:2, 385–402

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026