RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1976 Volume 99(141), Number 3, Pages 468–476 (Mi sm2763)

This article is cited in 17 papers

On the number of permutations of special form

M. P. Mineev, A. I. Pavlov


Abstract: It is shown that the number of permutations $a$ for which the equation $x^k=a$, where $a\in S_n$ ($S_n$ is the symmetric group of degree $n$) and $k<1$ is a fixed natural number, has at least one solution $x\in S_n$ is asymptotically equal to
$$ C(k)n^{\varphi(k)/k-1/2}\biggl(\frac ne\biggr)^n\quad\text{as}\quad n\to\infty, $$
where $C(k)$ is a constant depending only on $k$, and $\varphi(k)$ is the Euler function.
Bibliography: 4 titles.

UDC: 519.1

MSC: 20B99, 05A15

Received: 09.06.1975


 English version:
Mathematics of the USSR-Sbornik, 1976, 28:3, 421–429

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026