RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1980 Volume 112(154), Number 4(8), Pages 483–521 (Mi sm2735)

This article is cited in 23 papers

Optional martingales

L. I. Gal'chuk


Abstract: In this paper it is proved that every optional local martingale $X$ is representable in the form $X=X^g+X^c+X^d$, where $X^c$ is a continuous martingale, $X^d$ is right continuous and $X^g$ is left continuous.
The paper also contains results concerning square-integrable martingales. In paticular, a definition of stochastic integrals with respect to optional martingales is given, and a formula for change of variables is proved.
Bibliography: 13 titles.

UDC: 519.2

MSC: Primary 60G44, 60G40; Secondary 60G17, 60H05

Received: 18.12.1979


 English version:
Mathematics of the USSR-Sbornik, 1981, 40:4, 435–468

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026