Abstract:
This paper investigates general boundary value problems for a class of singular and degenerate elliptic equations satisfying Lopatinskii-type conditions on the part of the boundary where the singularity is concentrated. In the elliptic equations considered, the singular Bessel operator $\displaystyle B=\frac{\partial^2}{\partial y^2}+\frac{2\nu+1}y\frac\partial{\partial y}$ operates on one of the variables. For the above-mentioned problems coercive (a priori) bounds are given, right and left regularizers are given, and, with these, Fredholm solvability is proved.
Bibliography: 15 titles.