RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1980 Volume 112(154), Number 3(7), Pages 354–379 (Mi sm2730)

This article is cited in 8 papers

General boundary value problems for a class of singular and degenerate elliptic equations

V. V. Katrakhov


Abstract: This paper investigates general boundary value problems for a class of singular and degenerate elliptic equations satisfying Lopatinskii-type conditions on the part of the boundary where the singularity is concentrated. In the elliptic equations considered, the singular Bessel operator $\displaystyle B=\frac{\partial^2}{\partial y^2}+\frac{2\nu+1}y\frac\partial{\partial y}$ operates on one of the variables. For the above-mentioned problems coercive (a priori) bounds are given, right and left regularizers are given, and, with these, Fredholm solvability is proved.
Bibliography: 15 titles.

UDC: 517.946

MSC: Primary 35J70; Secondary 35B45

Received: 22.02.1980


 English version:
Mathematics of the USSR-Sbornik, 1981, 40:3, 325–347

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026