RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1980 Volume 112(154), Number 2(6), Pages 207–219 (Mi sm2721)

This article is cited in 8 papers

On reducibilities of numerations

A. N. Degtev


Abstract: If $\nu_0$ and $\nu_1$ are two numerations of the set $S$, then $\nu_0$ will be said to be $e$-reducible to $\nu_1$ provided there exists an enumeration operator $\Phi$ such that ($\forall s\in S$) $[\nu_0^{-1}(s)=\Phi(\nu_1^{-1}(s))]$.
In this paper both $e$-reducibility and upper semilattices of $e$-equivalent computable families of recursively enumerable sets are studied. Some of these semilattices admit an elegant description; for others sufficient conditions are found in order that they have an $e$-principal numeration or be countable.
Bibliography: 7 titles.

UDC: 517.11+518.5

MSC: Primary 03D30; Secondary 03D25

Received: 05.07.1979


 English version:
Mathematics of the USSR-Sbornik, 1981, 40:2, 193–204

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026