RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1980 Volume 112(154), Number 2(6), Pages 170–192 (Mi sm2719)

This article is cited in 54 papers

On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations

A. M. Meirmanov


Abstract: In this paper the author proves a theorem on the existence of a classical solution of the Stefan problem for the equation
$$ D_t\theta=\sum^n_{i,j=1}D_i[a_{ij}(x,t,\theta)D_j\theta]+f(x,t,\theta,D\theta) $$
on a small time interval.
The solution is obtained as a limit as $\varepsilon\to0$ of solutions of auxiliary “regularized” problems. Estimates for solutions of the auxiliary problems are established that do not depend on $\varepsilon$. These estimates permit one to say something about the compactness of the family of solutions in the space $C^{2,1}$.
Bibliography: 13 titles.

UDC: 517.946+536.42

MSC: Primary 35K20, 35K55; Secondary 82A25

Received: 14.08.1979


 English version:
Mathematics of the USSR-Sbornik, 1981, 40:2, 157–178

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026