RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2007 Volume 198, Number 9, Pages 29–42 (Mi sm2703)

This article is cited in 2 papers

The 2-cohomology of the group $\Omega^-(4,q)$ with coefficients in the natural module

V. P. Burichenko

Gomel Branch Of Institute of Mathematics, National Academy of Sciences of Belarus

Abstract: The 2-cohomology group is determined for the finite simple orthogonal group $\Omega^-(4,q)$, where $q$ is odd, with coefficients in the natural module. For $q\ne9$ this group is trivial, and for $q=9$ it is isomorphic to $Z_3^4$. Thus Küsefoglu's result is corrected.
Bibliography: 5 titles.

UDC: 512.542.5

MSC: Primary 20G10; Secondary 20G05, 20G40

Received: 09.08.2006

DOI: 10.4213/sm2703


 English version:
Sbornik: Mathematics, 2007, 198:9, 1247–1260

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026