RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1978 Volume 107(149), Number 4(12), Pages 572–600 (Mi sm2696)

This article is cited in 9 papers

On the asymptotic properties and necessary conditions for existence of solutions of nonlinear second order elliptic equations

I. Kametaka, O. A. Oleinik


Abstract: In this paper functions $u(x)$ satisfying the inequality $L(u)+k(x)f(u)\leqslant0$ in a domain $\Omega$ are studied. Here $L(u)$ is a linear second order elliptic operator with positive definite characteristic form, $k(x)\geqslant0$, and $f(u)$ is defined in an interval $u^-<u<u^+$, in which $f(u)>0$, $f'(u)\geqslant0$ and $\int_u^{u^+}\frac{ds}{f(s)}<\infty$.
Bibliography: 13 titles.

UDC: 517.946

MSC: Primary 35J60; Secondary 35J25

Received: 18.07.1978


 English version:
Mathematics of the USSR-Sbornik, 1979, 35:6, 823–849

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026