RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1997 Volume 188, Number 10, Pages 109–130 (Mi sm266)

This article is cited in 1 paper

Products in categories of fractions and universal inversion of homomorphisms

S. N. Tronin

Kazan State University

Abstract: Main result. If finite direct products exist in a category and the class of morphisms $\Sigma$ is such that the category of fractions $[\Sigma ^{-1}]$ and the canonical functor $\mathfrak K\to [\Sigma ^{-1}]$ preserves these products. Using this theorem analogues of the theory of matrix localization of rings are constructed for arbitrary varieties of universal algebras and for preadditive categories.

UDC: 512.58+512.572+512.552.51

MSC: Primary 18D30, 18C10; Secondary 08B20, 08B25, 08A35, 16S10

Received: 28.07.1994 and 28.06.1997

DOI: 10.4213/sm266


 English version:
Sbornik: Mathematics, 1997, 188:10, 1521–1541

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026