RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1980 Volume 111(153), Number 4, Pages 579–609 (Mi sm2659)

This article is cited in 6 papers

Galois cohomology and some questions of the theory of algorithms

R. A. Sarkisyan


Abstract: Let $G$ be an arbitrary linear algebraic group defined over an algebraic number field $K$, let $R$ be its solvable radical, let $S=G/R$, and let $\widetilde S$ be the simply connected covering group of $S$. The basic result of the paper asserts that whether any two Galois 1-cocycles in $Z_1(K,G)$ are cohomologous is algorithmically verifiable, if the “Hasse principle” holds for $\widetilde S$.
Bibliography: 13 titles.

UDC: 519.44

MSC: Primary 12A55; Secondary 12A60, 12G05, 03F65

Received: 23.01.1979


 English version:
Mathematics of the USSR-Sbornik, 1981, 39:4, 519–545

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026