RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1997 Volume 188, Number 10, Pages 3–24 (Mi sm262)

This article is cited in 21 papers

Measure-valued almost periodic functions and almost periodic selections of multivalued maps

L. I. Danilov

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences

Abstract: This article contains a study of Stepanov almost periodic selections of multivalued maps $t\mapsto \operatorname {supp}\mu [\,\cdot\,;t]$, $t\in \mathbb R$. It is assumed that for a.e. $t\in \mathbb R$ the measure $\mu [\,\cdot\,;t]$ is a Radon probability measure on a complete metric space and $t\mapsto \operatorname {supp}\mu [\,\cdot\,;t]$, $t\in \mathbb R$, is a measure-valued almost periodic function.

UDC: 517.9

MSC: Primary 42A75, 54C65; Secondary 54C60, 28B20, 43A60

Received: 23.05.1995 and 08.01.1997

DOI: 10.4213/sm262


 English version:
Sbornik: Mathematics, 1997, 188:10, 1417–1438

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026