RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1978 Volume 107(149), Number 1(9), Pages 37–55 (Mi sm2616)

This article is cited in 2 papers

Some analytic properties of convex sets in Riemannian spaces

S. V. Buyalo


Abstract: We investigate analytic properties of the boundary $bC$ of a locally convex set $C$ in a Riemannian space $M^n$, $n\geqslant2$, in particular, its mean curvature $H$ as a function of the set. For an $M^3$ of nonnegative curvature we prove the inequality
$$ 4\pi\chi(bC)t_0\leq H(bC)+\Omega(C), $$
where $\chi$ is the Euler characteristic, $t_0$ the radius of the largest ball inscribed in $C$, and $\Omega(C)$ the scalar curvature of $C$.
Bibliography: 16 titles.

UDC: 513.813

MSC: Primary 52A20; Secondary 53C20

Received: 19.07.1977


 English version:
Mathematics of the USSR-Sbornik, 1979, 35:3, 333–350

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026