RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1978 Volume 106(148), Number 4(8), Pages 604–621 (Mi sm2609)

This article is cited in 71 papers

The asymptotic behavior of solutions of the second boundary value problem under fragmentation of the boundary of the domain

E. Ya. Khruslov


Abstract: The second boundary value problem is considered for the equation $\Delta u-cu=f$ in a domain $G^{(s)}$ of complicated structure of the form $G^{(s)}=\mathbf R_n\setminus F^{(s)}$, where $F^{(s)}$ is a closed finely partitioned set lying in a domain $\Omega\subset\mathbf R_n$ ($n\geqslant 2$) for all $s=1,2,\dots$. The asymptotic behavior of a solution $u^{(s)}(x)$ of this problem is studied as $s\to\infty$, when $F^{(s)}$ becomes more and more finely divided and is situated in $\Omega$ so that the distance from $F^{(s)}$ to any point $x\in\Omega$ tends to zero. It is proved that under specific conditions $u^{(s)}(x)$ converges in $\mathbf R_n\setminus\overline\Omega$ to a function $u(x)$ that is a solution of a conjugation problem. Sufficient conditions for convergence are formulated.
Bibliography: 9 titles.

UDC: 517.946.9

MSC: 35G15, 35B40

Received: 21.11.1977


 English version:
Mathematics of the USSR-Sbornik, 1979, 35:2, 266–282

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026