RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1980 Volume 111(153), Number 2, Pages 249–265 (Mi sm2587)

This article is cited in 8 papers

The local ergodic theorem for groups of unitary operators and second order stationary processes

V. F. Gaposhkin


Abstract: Let $(U_t)^\infty_{-\infty}$, be a strongly continuous unitary group in $L_2(X,S,\mu)$, where $\mu$ is a $\sigma$-finite measure.
The local ergodic theorem is the relation
\begin{equation} \lim_{t\to0}\frac1t\int^t_0(U_\tau f)(x)\,d\tau=f(x)\quad \text{a.\,e.} \end{equation}
for $f\in L_2(X)$. It is shown that this relation is not satisfied for all $f\in L_2(X)$ and $\{U_t\}$. Necessary and sufficient conditions are obtained for the local ergodic theorem in terms of properties of the spectral measure $\{E(d\lambda)f\}$, where $\{E(d\lambda)\}$ is the resolution of the identity corresponding to the group $(U_t)$. In particular, (1) is satisfied if the integral
$$ \int^\infty_{-\infty}[\log\log(\lambda^2+2)]^2\cdot\|E(d\lambda)f\|^2 $$
converges. Generalizations to multiparameter groups and homogeneous random fields are given.
Bibliography: 10 titles.

UDC: 519.214.9

MSC: Primary 47A35, 47D10, 60G10; Secondary 60G60

Received: 25.10.1978


 English version:
Mathematics of the USSR-Sbornik, 1981, 39:2, 227–242

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026