RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1978 Volume 106(148), Number 2(6), Pages 214–233 (Mi sm2567)

This article is cited in 5 papers

On passing to the limit in degenerate Bellman equations. I

N. V. Krylov


Abstract: In this paper the author proves theorems on passage to the limit in nonlinear parabolic equations of the form $Fu=0$, arising in the theory of optimal control of random processes of diffusion type. Under the assumptions that i) the functions $u_n$ and $u$ have bounded Sobolev derivatives in $t$, ii) the $u_n$ and $u$ are convex downwards in $x$, iii) the $u_n$ are uniformly bounded in some domain $Q$, iv) $u_n\to u$ a.e. in $Q$, v) the coefficients of linear combinations of $F$ satisfy certain smoothness conditions, it is proved that $Fu_n=0$ on $Q$ for all $n$ implies $Fu=0$ on $Q$. The second derivatives of the $u_n$ and $u$ with respect to $x$ are understood in the generalized sense (as measures), and the equations $Fu_n=0$ and $Fu=0$ are considered in the lattice of measures.
Bibliography: 10 titles.

UDC: 519.2+517.9

MSC: Primary 60J60; Secondary 93E20

Received: 27.04.1977


 English version:
Mathematics of the USSR-Sbornik, 1978, 34:6, 765–783

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026