RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1987 Volume 133(175), Number 2(6), Pages 184–199 (Mi sm2543)

This article is cited in 12 papers

On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a finite interval

M. M. Gekhtman


Abstract: Consider the spectral problem ($0<x<1$)
$$ -y''(x)=\lambda\rho (x)y(x);\quad y(0)=y(1)=0;\quad \rho(x)>0;\quad \rho(x)\in C_{[0,1]}. $$

Let $\lambda_n(\rho)$ and $u_n(x,\rho)$ ($n\in N$) be the eigenvalues and the corresponding eigenfunctions, normalized in $L_2(0,1;\rho)$.
Theorem. 1. {\it If the weight function $\rho(x)$, continuous on $[0,1]$, is positive, then
$$ \lim\lambda_n^{-1/4}(\rho)\max_{0\le x\le1}|u_n(x,\rho)|=0\qquad(n\to\infty). $$

2. For any $\varepsilon>0$ there exists a continuous weight $\rho_0(x,\varepsilon)>0\quad(x\in[0,1])$ such that
$$ \varlimsup\lambda_n^{-1/4+\varepsilon}(\rho_0)|u_n(1/2,\rho_0)|=0\qquad(n\to\infty). $$
}
Bibliography: 17 titles.

UDC: 517.43

MSC: Primary 34B25; Secondary 34E05, 47E05

Received: 07.06.1984 and 25.02.1986


 English version:
Mathematics of the USSR-Sbornik, 1988, 61:1, 185–199

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026