RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1978 Volume 105(147), Number 2, Pages 180–191 (Mi sm2524)

This article is cited in 4 papers

Some properties of the normal image of convex functions

N. V. Krylov


Abstract: Let $z$ be a convex function defined in a convex domain $D$ of a finite-dimensional Euclidean space. Denote by $z^{(n)}$ the convolutions of $z$ with elements of a $\delta$-type sequence of test functions and let $\nu_z$ and $\nu_{z^{(n)}}$ be the measures of normal images corresponding to $z$ and $z^{(n)}$. One of the main results of this work is that $\nu_{z^{(n)}}\to\nu_z$ in variation on a compact $K\subset D$ if and only if $\nu_z$ is absolutely continuous on $K$ with respect to Lebesgue measure.
Bibliography: 7 titles.

UDC: 517.5

MSC: Primary 26A51, 28A20; Secondary 53C45

Received: 12.01.1977


 English version:
Mathematics of the USSR-Sbornik, 1978, 34:2, 161–171

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026