RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 110(152), Number 4(12), Pages 475–492 (Mi sm2506)

This article is cited in 11 papers

A priori estimates, existence theorems, and the behavior at infinity of solutions of quasielliptic equations in $\mathbf{R}^n$

L. A. Bagirov


Abstract: The equation
$$ A(x,D)u(x)=\sum_{\langle\alpha\cdot\theta\rangle\leqslant m}a_\alpha(x)D^\alpha u(x)=f(x),\qquad x\in\mathbf R^n, $$
is studied in this paper. Here $\theta=(\theta_1,\dots,\theta_n)$ is the index of quasihomogeneity of the operator $A$ and $\langle\alpha\cdot\theta\rangle=\alpha_1\theta_1+\dots+\alpha_n\theta_n$. The quasiellipticity condition
$$ \biggl|\sum_{\langle\alpha\cdot\theta\rangle=m}a_\alpha(x)\xi^\alpha\biggr|\geqslant\delta\sum_{k=1}^n|\xi_k|^{m_k},\qquad\delta>0,\quad\xi\in\mathbf R^n,\quad x\in\mathbf R^n,\quad\frac{m_k}m=\theta_k^{-1}, $$
is assumed to hold. Theorems on the Noether property of $A$ in weighted spaces are proved under two types of conditions on the behavior of the coefficients $a_\alpha(x)$ at infinity.
Bibliography: 18 titles.

UDC: 517.946

MSC: Primary 35R99; Secondary 35B45, 35B40

Received: 29.05.1978


 English version:
Mathematics of the USSR-Sbornik, 1981, 38:4, 437–452

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026