RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 116(158), Number 4(12), Pages 585–592 (Mi sm2487)

Symmetric stochastic differential equations with nonsmooth coefficients

V. Mackevičius


Abstract: The concept of a solution of a symmetric stochastic equation
$$ X_t=x+\int^t_0\sigma(s,X_s)\circ dB_s+\int^t_0b(s,X_s)\,ds,\qquad t\geqslant0, $$
is generalized to the case when the coefficient $\sigma=\sigma(t,x)$, $(t,x)\in\mathbf R_+\times\mathbf R$, is continuous and continuously differentiable with respect to $t$, i.e., $\sigma\in C^{1,0}$. Here $B_t$, $t\geqslant0$, is a one-dimensional Brownian motion, and the stochastic integral is understood in the symmetric sense (in the sense of Stratonovich). Sufficient conditions are obtained for the existence and uniqueness of a solution, and the stability of a solution under perturbations of the coefficients is investigated.
Bibliography: 14 titles.

UDC: 519.21

MSC: Primary 34A10, 34D10, 60H10; Secondary 60H05, 60J65

Received: 12.11.1980


 English version:
Mathematics of the USSR-Sbornik, 1983, 44:4, 527–534

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026