RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 116(158), Number 3(11), Pages 398–426 (Mi sm2475)

This article is cited in 7 papers

On a certain stochastic quasilinear hyperbolic equation

D. A. Khrychev


Abstract: The author considers the first boundary value problem for the equation
$$ \frac{\partial^2u(t,x)}{\partial t^2}+k\,\frac{\partial u}{\partial t}-\Delta u+|u|^\rho u=\frac{\partial w(t,x)}{\partial t},\qquad t>0, \quad x\in\mathscr O\Subset\mathbf R^n, $$
where $k\geqslant0$, $\rho>0$, and $w(t)$ is a Wiener process in the space $L^2(\mathscr O)$. The initial values are assumed random and independent of the process $w(t)$. The existence of a space-time statistical solution is proved and (under a certain restriction on $\rho$) the existence of a strong solution. A steady state space-time statistical solution is constructed for $k>0$.
Bibliography: 12 titles.

UDC: 517.946

MSC: Primary 35A05, 35L70, 60H15; Secondary 46E35, 60B10, 60G10, 60G15, 60G17, 65N30

Received: 21.01.1981


 English version:
Mathematics of the USSR-Sbornik, 1983, 44:3, 363–388

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026