RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 116(158), Number 2(10), Pages 245–252 (Mi sm2460)

This article is cited in 1 paper

On the spectrum and bases of eigenfunctions of a problem connected with oscillations of a rotating fluid

S. A. Gabov


Abstract: The author considers the eigenvalue problem
\begin{gather*} \Delta u-\mu^2\,\frac{\lambda^2-k^2}{\lambda^2-\beta^2}\,u=0,\qquad x\in D\subset\mathbf R^2, \\ \frac{\partial u}{\partial n}+i\,\frac k\lambda\,\frac{\partial u}{\partial \tau}=0, \qquad x\in\partial D, \end{gather*}
which arises in studying the problem of normal oscillations of a rotating exponentially stratified liquid in a cylindrical container. It is shown that the spectrum is real and localized in the neighborhood of two limit points $\lambda=\pm\beta$, and the system of eigenvalues forms a two-fold Riesz basis in $L_2(D)$.
Bibliography: 9 titles.

UDC: 517.948.35

MSC: Primary 76U05, 76V05, 47A10, 47A70, 47B10, 47H15; Secondary 46E20

Received: 30.09.1980


 English version:
Mathematics of the USSR-Sbornik, 1983, 44:2, 219–226

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026